D-A185 581

ALGEBRAIC ASPECTS OF COMPUTING NETWORK RELIRBILITV(U)
CLEMSON UNIV SC DEPT OF MATHEMATICAL SCIENCES
D R SHIER SEP 86 TR-517 AFQSR-TR-87-1129 SRFOSR 84 0154

UNCLASSIFIED

i1




I

Bz

o
EE

l
I

EEEE

=ik
i Tl =
= fl2
L2 L2 e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU DF STANDARDS-1963-A

%, i
N,azl‘;neuv'\'ﬂ

DEFALN




-y

AD-A185 501

AR
:PORT DOCUMENTAIION PAGE

3 OISTRIBUTION/ AVAILABILITY OF REPORT

Clemson University

NA
2b. DECLASSH KA TION . DOWNGRADING SCHEDULE Al?proved ?01’ Public REIease’
NA Distribution Unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER S)
AFOSR-TR- 87 -
6a. NAME Of PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable) AFOSR/NM

6¢ ADDRESS (City, State, and ZIP Code)
Clemson SC 29634-1907

7b ADORESS (City, State, and ZIP Code)
Bldg. 410
Bolling AFB, DC 203326448

Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER
ORGANIZATION (if applicable)
AFOSR 578 AFOSR~84~0154
Bc. ADORESS (City, -State,.and ZIP Code) .30 SOURCE .OFf FUNDING NUMBERS
Bldg. 410 PROGRAM PROJECT TASK WORK UNIT
. ELEMENT NO. NO. NO. ACCESSION NO.

1. TITLE (Include Security Classification)

Approximating Network Reliability (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
D. R. Shier and D. E. Whited

| ectsmmmeirer

13a. TYPE OF REPORT ’7’2,‘,;/‘[[,(

FROM

16. SUPPLEMENTARY NOTATION

13b. TIME COVERED

T0

14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
September, 1986 8

Department of Mathematical Sciences, Technical Revort #510

17. COSATI CODES

FIELD GROUP SUB-GROQUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Acyclic networks; approximation; bounds; reliability

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

> The problem of calculating the two-terminal reliability of a network having edges that
fail randomly and independently is known to be NP-hard,
acvclic networks. This paper discusses an iterative technique that provides at each
iteration both upper and lower bounds on the exact reliability value. These bounds
are shown to converge to the exact answer for the case of acyclic networks.
tational results indicate that for certain classes of graphs these bounds converge
rapidly and provide excellent approximations to the true network reliability

even in the case of directed

Compu-

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
D UNCLASSIFIEDUNLIMITED [ SAME AS RPT.

(J oTic USERS

21. ABSTRACT SECURITY CLASS!FICATIOS

UNCLASSTIFIED

ECTE
oCT 0 6 1887

22a. NAME Of RESPONSIBLE INDIVIDUAL
Brian W. Woodruff, Maj.

22b. TELEPHONE (Include Area Code)

22¢. QFFICE
(202) 767-3027 ‘AFOSRfﬁM“oL

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECLRITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED




o ™ Ao AR A o L A o g b sl Y}
.
R
.

| o
'

AFOSR.TR- 87-1i29 '

’

’l

ALGEBRAIC ASPECTS OF COMPUTING NETWORK RELIABILITY _
&

3

D. R. Shier i

y

4

\J

\»

1t

‘.

<]

Department of Mathematical Sciences o

Clemson University v

Acoession For .

[ NTIS GRARI g v

DTIC TAB N

Unannounced a :

Justification | \

Technical Report #517 i

By. o

Distribution/ "

Availability Codes :

Avail and/or by

June, 1986 Dist Spevial i

“

A-/ ‘

’ A 0'

b .O
: 2
] This research was supported by the U.S. Air Force Office of Scientific ;:
Research (AFSC) under Grant AFOSR-84-0154 EZ

4

'l

‘I

A

d

'1

D)

. . o A N LA AL A -
" § U ()
B A TR U RO IR IR KRN A e D Tt K ',.q‘ g ..4'. (A0 u‘:’.‘. '.,0'. o‘h et 0% ‘t'. "




Be

i

T i

" = ALGEBRAIC ASPECTS OF COMPUTING NETWORK RELIABILITY

2’ D. R. Shier

g Department of Mathematical Sciences

o Clemson University

.~:* : Clemson, SC 29634

)

i

‘::E 1. Introduction

e

;.';':3 It is important to be able to assess the reliability of a complex system, based on
j‘%ﬁ knowledge concerning the reliabilities of its individual components. Such problems
Rt arise with increasing frequency in the analysis of telecommunication, distribution and
:.i"' transportation systems, all of which can be modeled as networks of various sites (or
;=. nodes) interconnected by edges. In a typical situation, edges of the network (which
:,"‘Y“" may be directed or undirected) are assumed to fail in a statistically independent

i ;} fashion with known probabilities. For such networks, a variety of probabilistic

%& measures of system performance have been considered: namely, the probability that
, ‘ two given nodes can communicate [11,13,33], that a given node can communicate with
E;:" a specified portion of the network [6,25], or that every pair of nodes can communicate
:‘;‘? [8,26,33].

W Numerous algorithms have been proposed for calculating these measures of
:;‘:; network reliability. One class of methods is based on the idea of a path, a minimal set
::g?' of edges whose operation ensures that the system functions. In this approach, paths
I8 must first be enumerated and then combined either by applying the inclusion-exclusion
::::'E principle or by effecting a partition into mutually disjoint events [2,13-15,17,27]. An
,EEE:' alternative approach uses instead the enumeration and combination of cutsets,

8 minimal sets of edges whose failure ensures that the system cannot function

i" [1,11,12,17,22). _

:E‘.;s A different approach, called pivotal decomposition, considers the two states
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(operative or failed) assumed by a given edge in the network [2,7,16,26]. Based on

-

these two states, the given network decomposes into two smaller subnetworks. This

process is repeatedly applied until all resulting subnetworks are solvable.

ATy

Satyanarayana and Chang [26] have formulated and implemented an optimal edge

3: selection strategy that achieves the minimum possible computational effort in the case
Q; of undirected networks.

;-S Despite the considerable effort spent in developing algorithms for the calculation
:'! of network reliability, the effective computation of such probabilistic measures for

" general networks remains elusive. Namely, all known general procedures exhibit a

f' worst-case behavior that is exponential in the size of the network. Since no

:‘[.;: polynomially-bounded algorithm has yet been devised, the exact computation of

> network reliability has been confined to networks of rather small size. In fact, most

‘, reliability problems of any substance are now known to be NP-hard or #P-complete

;, [5.20-22,24,32)], making it extremely unlikely that any polynomially-bounded algorithm
3 will ever be found. As a result, recent research has concentrated on developing

0 algorithms adapted to special network structures (where polynomial-time algorithms

A are possible), or has pursued a simulation approach [10].

A number of special classes of undirected networks have recently been analyzed

e,

with success. Polynomial-time algorithms are now available for calculating certain

LA/

reliability measures in series-paralle! [28], inner-four-cycle-free [18], and cube-free [19]

planar graphs. Provan [20] has shown, however, that the problem of determining

source-to-terminal reliability remains #P-complete for the general class of planar

A e

graphs. In order to analyze more complex networks topologies, the idea of pivotal

decomposition together with polygon-to-chain reductions [34] can be used to

-

decompose the original problem into smaller subproblems.

e
X

Similar results and tools are not as readily available in the case of directed
networks. The only significant types of directed networks that are known to admit a

polynomial-time algorithm are "basically-series-parallel” networks [3,4]. For general
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directed networks, the algebraic approach developed by Shier and Whited [30,31]

BRI

yields algorithms for solving, either approximately or exactly, some relatively complex
source-to-terminal problems, although the computation time grows relentlessly with the
size of the network.

This paper investigates a general algorithm for calculating source-to-terminal

reliability in certain well-structured classes of networks, exemplified by planar graphs.

%, The emphasis is on identifying an underlying lattice structure that captures certain

f algorithmically desirable features of such networks. The motivation for the present
o work derives from several recent results concerning cutset-based algorithms for

«' network reliability. Specifically, Buzacott [9] discusses how reliability formulas using

the disjoint products form can be simplified by making use of a certain ordering of

cutsets in the network. Shanthikumar [29] has also exploited ordering properties of

' cutsets to obtain an efficient recursive algorithm to calculate an upper bound on

j, source-to-terminal reliability. Most recently, Provan and Ball [22] have described a

. pseudo-polynomial algorithm for computing the reliability of an arbitrary

: source-to-terminal network (either directed or undirected). Namely, an algorithm is

: provided with worst-case complexity that is polynomial in the pumber of cutsets

gy separating the source s and terminalt. Provan and Ball further show that for directed

?' networks no algorithm polynomial in the number of (s,t) paths can exist unless P = NP.
?‘!’ For networks of reasonable size and sparsity, the collection of (s,t) paths can be
' quickly enumerated using a modified depth-first search of the network [23]. The

é generation of all (s,t) cutsets is not as straightforward, particularly in the case of

N directed networks. Thus, while a pseudo-polynomial algorithm exists relative to the

:,; number of cutsets, the effort required to generate such cutsets may be strikingly larger
E'é than that required to generate the corresponding paths. As an example, consider the
:13 dodecahedron graph given in Figure 1, having 20 nodes and 30 edges. This example
K has 7376 (s,t) cutsets but only 780 (s.t) paths. Thus, in this instance not only are the

" cutsets more difficult to generate than the paths, but there are substantially more
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o cutsets than paths involved.

t The emphasis here is to crystallize those features of cutset-based algorithms that
vor IR make them theoretically attractive (pseudo-polynomial behavior), while at the same
time broadening the scope from cutsets to other, more easily computed, entities. We
e | present a general framework and a general recursive algorithm defined on certain

. collections of objects (e.g., cutsets and paths) that admit a suitable partial ordering.

B This algorithm will run in time polynomial in the number of such objects.
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2. Basic Definitions and Concepts

Let E = {e,,...0,} be a set of components, subject to failure, and let X = {X,,....X} be
a collection of subsets of E. Components in E have two states: active and inactive. A
set X; < E is called active if all its components are active. We suppose that (X,>) is a
partial ordering having the lattice property: namely, any two X;, X e X have a unique
least upper bound X; v Xj and a unique greatest lower bound X; A Xj. There are two

additional requirements imposed here.

Closure. If Xjis active and X; is active, then X; v X;and X; A X; are active. (1)
Connectivity. Ife e X;and e € X;then e e [X;, X]={ZeX: X; < Z < X}. (2)

The event {X; is active} will be denoted by A. We will be interested in calculating the

quantity
Q(X) =Pr(A, UA,U... UA).

Example 1. Consider the source-to-terminal undirected network G shown in Figure 2,
with components (edges) E = {e,,0,,85,8,,8-}. Here the X;'s will be the (s,t) cutsets in

the network defined by the following edge/node sets:

X, ={e,.85} V, ={s}

X, = {e,,e5,65} V, = {s,b}
X4 ={€,,85,0,} Vy = {s,a}
X, = {8465} V,={s.ab}

That is, the cutset X; consists of all edges in G = (V,E) joining nodes of V, with nodes of |
V-V, The partial order 2 is defined by
X2X eV, 2V,.

The associated Hasse diagram for this partial order is shown in Figure 3. It is easy to

(AR N ;
RUUANN X gf"ﬁ af‘ife.i',o,‘,':{
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verify that requirements (1) and (2) both hold. By considering an "active” component to
mean a "failed” component, the event A, signifies that all components in X; fail and Q(X)
is just the network unreliability 1-Ry(G): i.e., the probability that a message sent from s

will be unable to reach t.

Example 2. Again consider the network in Figure 2, with the X;'s now denoting the (st)
paths:

X, ={es.es5}
Xp=1{e.e3.8¢}
X5 ={e,e5.0,}
X4 ={e1.04)

We define X; 2 X; to mean that path X; is geometrically "above" path X, yielding the
same Hasse diagram shown in Figure 3. Again, requirements (1) and (2) are seen to
hold. Here, the association of "active” with "functioning™ allows A, to be interpreted as
the event that all components in X; are functioning, whereupon Q(X) is the

source-to-terminal reliability R,,(G).

As the above examples illustrate, we can define a partial ordering on the (s.t)
cutsets in an arbitrary network or on the (s,t) paths in an (s,t)-planar network. In both
cases, stipulations (1) and (2) are guaranteed hold. Other (non-network) examples of
coherent systems [7] also exist which admit an ordering such that (1) and (2) are
satisfied with respect to the system's "minpaths” or "mincuts". The following example

illustrates one such case.

Example 3. Consider a system with components {e,,e,.....eg}. The system functions if

and only if all components function in at least one of the following subsets ("minpaths”):

y,
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R Xy =1{81.82.85}
ffv‘? X2 = {62.93,94}
o X3 = {€5,84,05}

RN X4 = {€4,€584}

N If the (total) order 2 is defined by X, 2 X5 2 X, 2 X, then requirements (1) and (2) will
hold. In this case, the Hasse diagram for the partial order is simply a "chain,” and the

o sets X; do not correspond to the paths or cutsets of any network.
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3. The Recursive Algorithm

In what follows, it will be assumed without loss of generality that the elements of

the partial order have been topologically ordered : that is,
Xi<X =i<j. (3)

We are interested in calculating Q(X) = Pr(A), where A=A, UA, U ... UA. The events
A, are not disjoint, however. Accordingly, we define the events F; (which will be

disjoint) by
F; = {X, is the "lowest" active set in X}.

These events are well defined in view of (1). Namely, if Xi1, Xiz,..., Xik are active sets
thensois Xi1 A Xi2 A A Xik’ and thus Xi1 A Xi2 A A Xik = Xij for some j. Notice that

X, AXi A..aX, <X forallm, andso X; <X; forallactive sets X, . Thus X, is
1 2 K m ) m m J

indeed the lowest active set in X.
Our general development will parallel that of Provan and Ball {22], which was

originally stated in the specific context of (s,1) cutsets. First, it is easy to establish the

following two properties of the F's.

Property 1. FinFi=®fori %]
Proof: It F; and F; both occur fori # j then X; and X; are active, so X; A X; is active by (1).

Since X; A X; < X;and Xj A Xj < X;then X; = X; A X; = X;, a contradiction. ¢

Property 2. A=F,UF,u...UF,.
Proof: Suppose A occurs with X, e X;k being active. Then X; JAA Xik = x‘i is active

by (1) and so F, occurs. Conversely, if Fi occurs then Xi is active and so A occurs. ¢
i

As a result of the above properties

AN
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e Q(X) = Pr(A) = Z Pr(F) ., (@) ;

"'ﬂf i"
and the problem reduces to that of calculating the Pr(Fj). A general recursion involving

4% these quantities can be easily derived as follows.

£ 4
) A=\ FinA))
=1

ath = U EnNA)UF
~ [xi<xj ' l] l

[ ) Fin{Xl--Xiisactive}} v F. (5)
X;< X

‘f‘.‘

‘E'é The first equality follows from Property 2. The second follows since if F, N A

"{\* occurs then X, A Xj = X;, whence X; < Xj. Because all unions in (5) involve disjoint

events,

N3 PriA)=[ X Pr(F)Pr(X - X is active | F)] +Pr(F,).
i< X J
Now by requirement (2), e € Xj - X; cannot be an element of any X, < X;. This means
()
,335:: that the event F;, which requires X; to be active but all X, < X to be inactive, is

gt independent of the event {Xj- X;is active}, whence

& )= [, & P e ®

a0 i <%

R where

)
]

Pr(Xi - X, is active)

E::s:: . IT Preisactive),
:‘::,:. ee X]“xi

i assuming the independence of component failures. Rearranging (6) gives the

o recursion (see [22])

R Pr(F) = Pr(A) - D, PI(F)a,. (7)
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o The quantities A and o; are readily computed and thus Pr(F,), Pr(F,),..., Pr(F ) can be
e found in turn using (7). The quantity Q(X) can then be determined via (4). The

. worst-case complexity of the entire procedure is 0(my) < 0(|X[?), where my indicates
the number of arcs in the full partially ordered set (X,2). Thus the above procedure is
.:. pseudo-polynomial: namely, its running time is bounded by a polynomial in the

number of elements in the partial order.

o Example 4. Consider the source-to-terminal network given in the upper portion of
Figure 4. The ordering of paths from "top” to "bottom" gives the Hasse diagram shown
yaty in the lower portion of the figure. By using the shorthand notation aj= Pr(Aj), f. = Pr(F;)

and denoting the edge reliabilities as p,, relation (7) yields:

R fy=a,=popy.
it::'.‘ f2 = a5 - f1(PsPg) = P2PsPg - PoPsPEP7 .
{ t3 =25 - f,(P4P3) = P4P3P; - p:DzPapr

N and so forth, yielding R, (G) = Zf

d“’. =1

AN
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qay 4. An Alternative Formulation
[/
e
. Equation (6), rewritten with our shorthand notation, becomes
{4
E:-': a] = z fla" ’ au =1.
B
~) We can now use Moebius inversion over the partially ordered set (X,2) to obtain
N fi= 2 any, (8)
o X< X,
\.:,: | ]
s

where p; is the alternating sum of chain values, taken over all chains Q in (X,2) joining

. T X;and X;. Thatis,

e
£ { 1, =]

P\ Hj =

N g(-ﬂlolval(Q) Y

| \.""

? ) where val(Q) = [T« and |Q| denotes the number of arcs in chain Q. Algebraic

>
b

- 0eQ
e

simplification of (8) yields
AP IQ
=20 ) . @
B Q.
j
where the chains Q; extend downward from X;in (X,2) and
o o(Q) = I1{Pr(e): e € X; for some X; e Q}

= gives the joint probability of all edges appearing in some X; along the chain.

“~
Bads Analogously, when Q ranges over all chains in (X,2) we obtain

Q
2 Q(X) =§ o' Ve (10)

Nl As an illustration, consider the bridge network in Figure 2 with the associated
16 partially ordered set (based on paths) given in Figure 5. Then, using equation (9)

yields, for example

......

" ‘ ..., » (¥ '. '|. (™, Q) . O
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‘' 12
f4=P1P4 - (P1P3P4P5+P1PLP4P5+P1P2P3P,) + 2P1PoP3P4Ps,

where first term corresponds to the chain of length 0, the next (negated) terms
correspond to the three chains of length 1, and the final two terms correspond to the
chains of length 2. The final expansion for Q(X) resulting from (10) has 11 terms,

- corresponding to the 11 chains in (X,2). This number is to be compared with the

M) 24 - 1 = 15 potentially occurring terms appearing in the inclusion/exclusion formula [2].
Thus equation (10) captures some of the cancellation found in the topological

expansion formula of Satyanarayana and Prabhakar [27].
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5. Computational Results

Promising computational results have been obtained using the recursive

:_}-3 algorithm described in Section 3. We present in this section a fairly complete analysis
'. of two particular networks (of moderate complexity) that have thus far resisted any

A thorough analysis.

'i“ ‘ The first network, with 14 nodes and 25 edges, is shown in Figure 6. This

:'45 network (suggested by J. S. Provan) is known to be "se!f-dual,” having 426 paths

™ joining the specified s and t as well as 426 cutsets separating s andt. Since the

;:.P:" network is (s,t)-planar, the paths can be ordered as described in Section 2 and the

:’:é. recursive algorithm can then be applied. In order to present the results succinctly,

q. Table- 1(a) presents the coefficients of t.he.r.eliability polynomial wrwen expressed .as a
R function R,(p) of the common edge reliability p, = p. Table 1(b) lists values of this
polynomial at selected values of p throughout the range [0,1]. As expected, R,(0) =0,
._ " Rg(1) = 1, and R,(0.5) = 0.5, with the latter value occurring because the network is

i' self-dual. Computation of the relevant paths and the polynomial R,(p) required

:: approximately 2.7 seconds using the IBM 3081-K computer at Clemson University.

? A more complex network is the dodecahedron, shown in Figure 1. Since this
;:. network is not (s,t)-planar, the recursive formula was applied relative to the ordering
::: produced using the (s,t) cutsets. Knowledge of the planarity of the network was,

" however, exploited in generating and processing the 7376 cutsets. Table 2(a)

\::: presents the coefficients of the unreliability polynomial U, = 1 - R, now expressed for
) 3; convenience as a function of the common edge failure probability g, =1 - p, = Q.

:::o;'f Evaluation of U,(q) at selected values of q is given in Table 2(b). The total time

253; required to generate the cutsets and produce U (q) was under four and a half minutes
i::‘.{: of CPU time. It should be noted that the only previous calculations available for this
Ef,”;: example required several hours of CPU time (on a similar mainframe) in order to

‘:j.: obtain the value of U,(q) at two selected points (q = 0.1, q = 0.5).

e

t::i'.:

l.-.\ MK |‘.| U ;.
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Table 1. Reliability Polynomial R,(p) for Network in Figure 6

(a) Coefficients of R (p):

Ry(p)= 4p*+18p>+30p8-38p7-188p8-154p%+128p'0 + 1456 p'!
+658 p'2- 3252 p13-4952 p'4- 1212 p'S + 37621 p'€- 1082 p'?
- 213712 p'8 + 483698 p'9 - 565880 p?° + 414334 p?! - 198122 p22
+ 60628 p23 - 10850 p? + 868 p2°

(b) Evaluation of R(p) at selected points:

p: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ry(p): .0006 .0131 .0774 .2428 .5000 .7573 .9226 .9869 .9994
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Table 2. Unreliability Polynomial U,(q) for Network in Figure 1

(a) Coefficients of U(q):

Uy = 2q3+6q*+180°+89qf+216q7 -561 q8- 5522 q° - 4935 q'°
+ 56046 q'' + 133630 q'2- 624126 q'2 - 1223316 q'*
+ 8168604 q'° - 4322481 '€ - 63482286 q'7 + 256043573 q'8
- 560270502 q'° + 848614479 g0 - 961097704q2" + 841480923 q22
- 577634706 g2 + 311587945 g4 - 131092176 g5 + 42244830 28
- 10090328 g%’ + 1685643 q28 - 176016 q2° + 8656 q*°

(b) Evaluation of U(q) at selected points:

q: 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Uyl@): .0029 .0362 .1685 4272 .7097 .8975 9767 .9973 .8999
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